Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 206: 36-48, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36216224

RESUMO

Lectins or agglutinins are mainly proteins or glycoproteins, reported to uphold an ability to agglutinate the red blood cells (RBCs) with a known sugar specificity in a diverse group of organisms. In the present study, we purified a hemocyanin (named as MmHc) from a shrimp, Metapenaeus monoceros by size-exclusion chromatography. Further characterization revealed that the purified MmHc showed hemagglutination activity that was found to be specifically inhibited by Lewis B and Lewis Y tetrasaccharides. The MmHc displayed two oligomers of molecular weight approximately ∼78 and ∼85 kDa in SDS-PAGE. The native molecular mass of MmHc was found to be ∼457 kDa as determined by size-exclusion chromatography which indicated that the purified MmHc is an oligomeric protein. MmHc showed a maximum activity within pH 7.0-8.0, while a wide range of temperature stability was observed between 4 to 55 °C, however, it did not show any dependency on metal ions for binding. Subsequently, the analysis of the peptides by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) identified the purified MmHc as shrimp hemocyanin showing significant similarity to the hemocyanin of Penaeus vannamei. The results of multiple sequence alignment and detailed analysis of the molecular interactions predicted by AutoDock suggested that besides the oxygen carrier function, this MmHc may have multiple roles and can interact well with the Lewis Y antigen through a typical sugar binding motif containing the similar hydrophilic amino acids as the conserved residues.


Assuntos
Penaeidae , Animais , Penaeidae/metabolismo , Hemocianinas/química , Hemocianinas/metabolismo , Hemolinfa/química , Hemolinfa/metabolismo , Lectinas/farmacologia , Lectinas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Açúcares/análise
2.
Sci Total Environ ; 762: 143175, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33131875

RESUMO

The potent environmental toxicant aflatoxin B1 (AFB1), is a group I carcinogen reported to induce the expression of many cancer associated proteins. Epigenetic alterations such as DNA methylation and histone modifications play vital role in AFB1-mediated carcinogenesis. These epigenetic modifications may result in the recruitment of specific proteins and transcription factors to the promoter region and regulate gene expression. Here we show that AFB1, at lower concentrations (100 and 1000 nM) induced proliferation in L-132 and HaCaT cells with activation of the Akt pathway, which ultimately steered abnormal proliferation and transmission of survival signals. We demonstrated a significant reduction in the expression of p21 with a remarkable increase in the expression of cyclin D1 that correlated with increased methylation of CpG dinucleotides in p21 proximal promoter, while cyclin D1 promoter remained unmethylated. The chromatin immunoprecipitation results revealed the enrichment of DNMT3a and H3K27me3 repressive marks on the p21 proximal promoter where EZH2 mediated H3K27me3 mark enhanced the binding of DNMT3a at the promoter and further contributed to the transcriptional inactivation. The overall study provided the novel information on the impact of AFB1 on p21 inactivation via EZH2 and promoter methylation which is known to be a vital process in proliferation. Furthermore, AFB1 induced the expression of EZH2 analogue protein E(z), cyclin D1 analogue cyclin D and decreased the expression of p21 analogue Dacapo in Drosophila melanogaster. Interestingly, the aggressiveness in their expression upon re-exposure in successive generations suggested first hand perspectives on multigenerational epigenetic memory.


Assuntos
Aflatoxina B1 , Histonas , Aflatoxina B1/toxicidade , Animais , Metilação de DNA , Drosophila melanogaster , Epigênese Genética , Histonas/metabolismo
3.
Cell Biol Toxicol ; 35(1): 67-80, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29980893

RESUMO

Aflatoxins are fungal metabolites classified into four major groups such as B1, B2, G1, and G2. These natural aflatoxins are designated as group I carcinogen by the International Agency for Research on Cancer. Among these, the aflatoxin B1 is more potent. Protein arginine methyltransferase 5, an epigenetic modulator, emerged as an oncoprotein, is overexpressed in diverse forms of cancers. The present study aims to explore the AFB1-mediated overexpression of PRMT5. The AFB1 at nanomolar concentrations increased the cell viability, as well as the expression of PRMT5 and its binding partner methylosome protein 50 level significantly in L-132 and HaCaT cells. The knockdown of PRMT5 by its siRNA is attenuated by AFB1, thus substantiating AFB1-mediated PRMT5 overexpression. The PKC isoform-specific inhibitor study revealed direct relation with PKCα and an inverse relation with PKCδ. The analysis of mitogen-activated protein kinase pathway revealed reduced p38 phosphorylation with increased phosphorylation of ERK1/2 upon exposure to AFB1. The combination of MEK and PKC inhibitors with AFB1 treatment revealed that PKCα activates downstream kinase ERK which leads to overexpression of PRMT5. In summary, we propose that PKCα and extracellular signal-regulated kinases are conjointly involved in the induction of PRMT5 upon AFB1 exposure.


Assuntos
Aflatoxinas/toxicidade , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína Quinase C/metabolismo , Regulação para Cima/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Isoformas de Proteínas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Toxicon ; 151: 119-128, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30006306

RESUMO

The compulsive and insidious secondary metabolite aflatoxin B1, produced by the opportunistic fungi Aspergillus flavus, upholds a distinguished place in midst of the toxicants causing fatal hazards to humans. Aflatoxins alter the function of host cells by inducing multiple effects through genetic and non-genetic pathways. Epigenetic mechanisms drag major attention towards finding novel and new mechanisms involved in this process. Our present work intends to study the functional expression profile of multiple epigenetic regulators. AFB1 modulates multiple epigenetic regulators like DNA methyltransferases (DMNTs), histones modifying enzymes and polycomb proteins. AFB1 upregulates the expression of DNMTs at gene and protein level in a dose dependent manner. It reduced the histone acetyl transferase (HAT) activity significantly with a remarkable increase in histone deacetylase (HDAC) activity along with an induction in expression of HDACs gene and protein in a dose dependent manner. The gene and protein expression of polycomb repressor proteins B cell specific moloney murine leukemia virus integration site 1 (BMI-1) and enhancer of zeste homolog 2 (EZH2) was significantly over expressed with enhanced trimethylation of H3K27 and ubiquitination of H2AK119. In summary, our results show impact of aflatoxin B1 on multiple epigenetic modulations known to be pivotal in oncogenic processes.


Assuntos
Aflatoxina B1/toxicidade , Epigênese Genética/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Queratinócitos/efeitos dos fármacos , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo
5.
Med Mycol ; 55(3): 323-333, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27664169

RESUMO

Aspergillus flavus is an ubiquitous, opportunistic fungus responsible to cause invasive fungal allergic diseases, including bronchopulmonary invasive aspergillosis in persons with altered immune function. Lectins have been implicated as interaction mediators between the pathogenic fungi and human host. We isolated L-fucose specific lectin from A. flavus (FFL) and purified it to homogeneity with a combination of ion exchange and hydrophobic interaction chromatography methods. Its hemagglutination activity was significantly inhibited by 125 µM L-fucose as compared to other sugars and sugar derivatives. We, then used human cell line L-132, and U937 cell line to explore the possible cytotoxicity and proinflammatory effect of this fucose-specific lectin. The lectin induced the expression of proinflammatory cytokine interleukin-8 (IL-8) in a dose-dependent manner, and it was found to be associated with the p38 mitogen activated protein kinase (MAPK). The p38MAPK signalling pathway regulates the transcription factor activator protein-1 (AP-1) activity, which is the integration point of many signals that can differentially affect the expression and transcriptional activity of a cell. We observed activation of c-Jun, a critical component of the AP-1 complex, mediated by p38MAPK upon the FFL treatment in L-132 cells. Finally, inhibition of p38MAPK by a specific inhibitor attenuates the c-Jun, suggesting the p38MAPK involvement in the c-Jun activation, which in turn transcriptionally activates the induction of IL-8 in response to the lectin. Thus, this study showed a potential lectin-mediated mechanism to modulate the immune response during host-fungus interactions.


Assuntos
Aspergillus flavus/imunologia , Interleucina-8/biossíntese , Lectinas/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Aspergillus flavus/química , Linhagem Celular , Expressão Gênica , Humanos , Lectinas/isolamento & purificação , Sistema de Sinalização das MAP Quinases
6.
Toxicon ; 119: 117-21, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27242039

RESUMO

The exposure of naturally occurring mycotoxins affects human health and play a vital role in cancer initiation and progression. Aflatoxin B1 is a difuranocoumarin mycotoxin, classified as a group I carcinogen. The present study was conducted to assess the effect of aflatoxin B1 on epigenetic regulatory proteins. The protein arginine methyltransferase 5 expression was induced upon aflatoxin B1 treatment in a dose and time dependent manner. Further global arginine methylation was also increased in the same manner. This is the first report showing the induction of epigenetic regulatory protein, protein arginine methyltransferase 5 upon aflatoxin B1 treatment. Further study is required to establish the detailed pathway of PRMT5 induction.


Assuntos
Aflatoxina B1/toxicidade , Proteína-Arginina N-Metiltransferases/genética , Regulação para Cima/efeitos dos fármacos , Linhagem Celular , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...